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Abstract 
 
The key bottleneck of implicit computational electromagnetics tools for large complex 
geometries is the solution of the resulting linear system of equations. The goal of this effort was 
to research and develop critical numerical technology that alleviates this bottleneck for large-
scale computational electromagnetics (CEM). The mathematical operators and numerical 
formulations used in this arena of CEM yield linear equations that are complex valued, 
unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling 
formulations to different portions of a complex problem (hybrid formulations) results in a mixed 
structure linear system, further increasing the computational difficulty. Typically, these hybrid 
linear systems are solved using a direct solution method, which was acceptable for Cray-class 
machines but does not scale adequately for ASCI-class machines. Additionally, LLNL’s 
previously existing linear solvers were not well suited for the linear systems that are created by 
hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-
class computing platforms and to enable the next generation design capabilities. Multiple 
approaches were investigated, including the latest sparse-direct methods developed by our ASCI 
collaborators. In addition, approaches that combine domain decomposition (or matrix 
partitioning) with general-purpose iterative methods and special purpose pre-conditioners were 
investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix 
were adapted and developed based on intimate knowledge of the matrix properties. Finally, new 
operator formulations were developed that radically improve the conditioning of the resulting 
linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM 
problems that are 10 to 100 times larger than our previous capability. 
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Introduction 
 
The key bottleneck of implicit computational electromagnetics tools for large complex 
geometries is the solution of the resulting linear system of equations. The purpose of this LDRD 
effort was to develop critical numerical technology that alleviates this bottleneck for large-scale 
computational electromagnetics (CEM). By large-scale CEM, we mean high-fidelity direct 
numerical solution of Maxwell’s equations on ASCI class massively parallel computers 
(teraFLOPS speed, teraBYTES memory).  
 
A prime example of the present CEM class of tools is the Electromagnetic Interactions 
GEneRalized (EIGER) code, which was developed within Electronics Engineering. The EIGER 
code is a state-of-the-art frequency domain Maxwell equation solver based on a hybrid Finite 
Element – Boundary Element (FE-BE) formulation [1]. The code has an object-oriented design 
that has been implemented in Fortran 90 and allows a wide variety of numerical formulations, 
operators, and analytical treatments to be applied to the same problem simultaneously. Although 
this represents a real breakthrough in our ability to concisely apply different physics and 
numerics to a complex situation, it manifests itself mathematically in a mixed structure linear 
system that is extremely difficult to solve efficiently. This class of implicit codes (EIGER, NEC, 
and PATCH) represents some of Engineering’s general-purpose “workhorse” CEM tools. They 
have been used for modeling structures as diverse as MEMs devices and EUV lithography 
applications to the installed performance of full-scale antenna systems on complex platforms 
(such as NAI satellites and Navy surface combatants). An ability to solve larger systems of 
equations would enable modeling of more complex geometries and physically larger problems at 
a finer level of detail. 
 
Since the linear solve process is the computational bottleneck of implicit codes, we developed 
parallel linear solver technology for scientific and engineering codes that solve large, complex, 
unstructured, indefinite linear systems using EIGER as a test bed. Previously, the EIGER code 
solved a large linear system of equations using a direct solution method with O(N 3) complexity. 
Note that this is in contrast to many other Laboratory codes that are completely explicit (solving 
no linear system of equations) and therefore straightforward to parallelize. While the direct 
method was acceptable for Cray-class machines, it is unacceptable for ASCI-class machines. We 
estimate that a medium sized problem with 200000 unknowns would require 30 CPU days on 
our ASCI Blue supercomputer! LLNL has a number of efficient linear solvers, but these solvers 
are not suited for the linear systems addressed in this project. As discussed later, the mixed 
structure and mathematical nature of CEM problems present unique challenges that had not been 
adequately addressed by the applied math community. Thus, we required a new approach in 
order to make effective use of these world-class computing platforms and to enable the next 
generation design capabilities. Our goal was to enable ASCI-class machines to solve CEM 
problems that are 10 to 100 times larger than our previous capability. This would enable an 
unprecedented design capability with improved fidelity and accuracy. In the sections that follow, 
we describe our novel approaches for this problem and summarize our progress and 
accomplishments. 
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Background 
 
Implicit CEM tools, such as EIGER, are currently used to support a wide variety of LLNL 
programs and work for others (WFO) efforts. Each of these activities is constrained by the 
electrical size or modeling detail of the problem which then manifest themselves in the 
corresponding memory requirements and speed limitations of present solver technology. These 
modeling activities include: 
• NAI - Analysis and design of broadband RF systems for data collection and communication 

within the intelligence community 
• Lasers (IS&T - EUV Lithography) – Three-dimensional full-wave analysis of defects and the 

resulting effects on imaging quality and printability  
• Earth and Environmental – Large and rapid forward EM simulations coupled to inversion 

algorithms for underground imaging 
• Lasers and D&NT (MEMs) – Accurate prediction of electrical forces on micro-machines 

coupled to mechanical simulations for deformation analysis and component performance. 
Applications include surety components for weapons and micro-mirrors for IS&T 

• D&NT – Analysis of high powered pulsed electromagnetic systems  
• DoD – High Performance Computing Modernization Office (HPCMO) investment in 

massively parallel predictive tools for the war fighter program. In addition, Navy systems 
design and topside installed performance on next generation ships. 

• DARPA – Mixed signal systems CAD program (started July ’01) to couple full-wave EM 
solvers with digital and analog circuit simulators to model the next generation of systems-on-
a-chip.  

 

Related Activities 
 
Linear solver technology is an essential element for most of the disciplines, tools, and 
applications in the Center for Computational Engineering (CCE). Computational engineering 
and the CCE at LLNL, in particular, needed a library of parallel linear solvers to address the 
needs of the laboratory programs and to effectively utilize the present revolution in computer 
hardware. 
 
Computational electromagnetics is a core technology of the laboratory, with electromagnetic 
design and analysis directly impacting up to 50% of EE’s business. The CEM tools are classified 
into two broad areas: frequency domain methods and time domain methods. All of the frequency 
domain methods result in an underlying linear system of equations to be solved. The time 
domain methods are being extended to include implicit methods that will also require the 
solution of large linear systems by FY00. Improved solvers are therefore an enabling technology 
for virtually all of the EM tools within the CCE that are targeted for high performance computer 
(HPC) platforms. 
  
Significant research and development activities were leveraged during the course of this project. 
Although the ASCI linear solver developments are not focused on CEM related issues, key 
researchers there were interested in extending their research to include our problem domain. 
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Also, the work performed for sparse iterative solvers in the CEM arena has paved the way for 
extensions to the ME implicit tools (like NIKE) which currently rely solely on parallel direct 
methods. This was facilitated by coordinating our efforts with the Finite Element Interface (FEI), 
and ongoing ASCI activity to standardize the interface between solvers and applications.  In 
addition, CASC has an entire group that is responsible for linear solver technology focused 
primarily on the solution of elliptic partial differential equations. These researchers collaborated 
to address the difficult and unique challenges presented by this class of problem.  

Approach 
 
The EIGER program solves the frequency domain Maxwell’s Equations for arbitrary 3D 
geometry’s involving conductors, dielectric, and magnetic media. The user can specify the 
known fields and currents, and EIGER computes the unknown fields and currents in a 
completely self-consistent and physically accurate manner. In EIGER, Maxwell’s equations are 
solved using a hybrid Partial Differential Equation – Integral Equation (PDE-IE) formulation. 
The PDE part of the formulation is the exact physical description of the electromagnetic fields 
and currents in the inhomogeneous interior of a problem, whereas the IE part of the formulation 
is the exact physical description of the propagation of waves in the “unbounded” region. The 
integral equation portion of the problem can also employ analytical treatments by using Green’s 
functions to satisfy many boundary conditions directly (i.e. layered media and periodic 
structures). This hybrid formulation is optimal for a wide variety of open region EM problems 
such as antenna design, radar cross section prediction, and optical scattering since the BE 
formulation exactly models the radiation of EM fields in the infinite domain. 
 
The natural discretization of the PDE-IE formulation used in EIGER is a hybrid Finite Element – 
Boundary Element (FE-BE) discretization, where the interior PDE is discretized using 
volumetric finite elements and the exterior is discretized using surface boundary elements. This 
results in a large linear system of equations that must be solved for the unknown fields and 
currents. The solution of this linear system is the computational bottleneck and was the emphasis 
of this LDRD effort. The linear system is complex, non-Hermitian, indefinite, and ill 
conditioned. In addition, the linear system is complex because we are solving the frequency 
domain Maxwell’s Equations. The linear system is non-Hermitian since the PDE-IE itself is not 
self-adjoint; this in contrast to other fields of physics where the PDE is self-adjoint. Our linear 
system is indefinite due to the nature of our Helmholtz operator. This is quite different than the 
linear systems generated by the more abundant solid mechanics, hydrodynamics, and radiation 
transport codes; hence, the applied mathematics community has not aggressively attacked our 
problem. Finally, our linear system is ill conditioned because the underlying integro-differential 
equation we are discretizing is extremely stiff. 
 
EIGER previously used the ScaLAPACK library to solve the linear system [3]. This is a general-
purpose parallel dense matrix library. Since it is based on dense matrices, the CPU time for a 
solution is O(N 3), where N is the size of the matrix. For small systems (N < 10,000) this does not 
present a major problem. However, in order to obtain a high fidelity solution (using a fine 
computational mesh) or to address electrically larger problems a much larger matrix is required. 
As stated in section 2, a “medium” sized problem with N = 200000 would require 30 days of 
CPU time on the ASCI Blue supercomputer (figure 1).  
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Our approach to overcoming the O(N 3) bottleneck was to combine general-purpose iterative 
methods with special purpose preconditioners that take advantage of the structure of the matrix. 
In an iterative method, the user supplies an initial starting vector x0, and each iteration provides a 
new vector xi, which is closer to the exact solution x. There is an important class of iterative 
methods that require no matrix operations other than a simple matrix vector multiplication. In 
these methods, the ith iterate xi is an element of the space {r0, A r0,...,Ai r0}, where r0 = A x – b. 
This space is known as a Krylov space, and these methods are called Krylov methods. The most 
well known Krylov method is of course the Conjugate Gradient (CG) method, which is 
applicable to symmetric positive definite matrices. More modern Krylov methods applicable to 
our non-symmetric indefinite systems include Quasi Minimum Residual (QMR) and General 
Minimum Residual (GMRES). 
 
Each iteration of a Krylov method requires multiplication of the residual by the matrix A. If A is 
sparse, each iteration is O(N), where N is the size of the matrix. If A is dense, the complexity is 
O(N 2). In either case, if only a few iterations are required, a Krylov method can be significantly 
faster than a direct method. 
 
Accurate predictions of the rate of convergence of Krylov methods are difficult to make, but 
there are some general results. For example, the convergence of the CG method for symmetric 
positive definite systems is known to be proportional to the square root of the condition number 
of the matrix (where the condition number of such a matrix is the ratio of the maximum 
eigenvalue to the minimum eigenvalue). Hence, for well-conditioned systems CG converges 
quite rapidly. For other Krylov methods such GMRES, the clustering of the eigenvalues has a 
significant impact on convergence. 
 
In practice, preconditioning of the system of equations is often employed to improve the rate of 
convergence. The idea is to apply a linear transformation to the system of equations such that the 
transformed system is better conditioned, and then the Krylov method is applied to the 
transformed system and should converge faster. For example, consider the linear system A x = b. 
We can multiply both sides of the equation by a matrix M-1 without affecting the solution, 
resulting in the new system M-1 A x = M-1 b. The matrix M is referred to as the preconditioner. 
In order for this to be an effective preconditioner, 1) the new matrix M-1 A must be better 
conditioned than the original matrix A, resulting in fewer Krylov iterations, and 2) the matrix M-

1 must be easy (i.e. computationally inexpensive) to compute. Generally, if M is in some sense 
close to A, then M-1 A is close to the identity matrix (ideally conditioned) and the Krylov 
method will converge in a few iterations. 
 
The most effective preconditioners are those that take advantage of knowledge of the special 
properties of the underlying operator. For example, consider the solution of Laplace’s equation 
using a finite difference or finite element method. Since the Laplacian is known to be a 
smoothing operator, using a coarse grid solution, as a preconditioner is extremely effective, this 
is in fact the basis for CASC’s multigrid effort [4]. As another example, in radiation transport the 
diffusion approximation can be used to precondition the full transport equation. Unfortunately, 
neither of these approaches is applicable to Maxwell’s Equations. 
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Our approach was to develop special-purpose preconditioners based on intimate knowledge of 
the special properties of our PDE-IE operator. For example, we know that our hybrid PDE-IE 
formulation results in a block-structured matrix where we have a large sparse block due to the 
PDE and a smaller dense block due to the IE. This is illustrated in Figure 2. 

Coupling Terms 
(unsymmetric) 

Boundary Element 
(symmetric, dense) 

Finite Element 
(symmetric, sparse) 

Figure 2. Our hybrid PDE-IE formulation results in a block-structured matrix consisting of a large, sparse 
block and a smaller dense block. We can design efficient parallel preconditioners that take advantage of 
this structure.  
 
We can write our matrix A in block form where S is the large sparse block, D is the small dense 
block, and the matrices C and Q are the coupling terms (figure 3). This is in effect a domain 
decomposition where our unknowns are decomposed into volume (interior) and surface 
(boundary) unknowns, denoted as Xv and Xs, respectively. Likewise, the unknown source terms 
are decomposed into volume and surface terms, denoted as bv and bs, respectively. 

S C 

 ] 
X

X[ 
v 

s ] 
b

b[ 
v 

 ] = 
sQ[  D

Figure 3. Decomposing the unknowns into volume and surface domains leads to a block structured 
matrix for which we can easily design preconditioners. 
 
Several preconditioning methods become apparent now that our matrix is in block form. For 
example, we can construct a preconditioner M by ignoring the coupling terms in A, as illustrated 
in Figure 4. It is important to remember that M is only a preconditioner; we are solving the exact 
system A x = b using a Krylov method. The purpose of the preconditioner M is to reduce the 
number of Krylov iterations. To implement this in parallel, we assign m processors to work on S-

1 and n processors to work on D-1. Since D is dense, we initially used standard dense solver 
technology to solve this portion. As D increases in size, an iterative approach can be applied to 
its solution. This methodology is in contrast to our previous approach of using ScaLAPACK on 
the entire system, which as described earlier is unacceptable for ASCI-scale EM problems. 
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S 0 

0[  D ] M = 

Figure 4. A preconditioner M constructed by ignoring the coupling terms in A. A group of m processors 
is assigned to work on S-1, another group of n processors is assigned to work on D-1. 
 
Several approaches exist for computing S-1. Since S is extremely sparse, a sparse direct method 
based on degree-of-freedom re-ordering can be employed. Sparse direct methods were developed 
specifically for solving sparse systems of equations resulting from finite difference for finite 
element methods. By solving, we mean computing the lower and upper triangular factors of the 
matrix. To be specific, if our original system of equations is S x = b, then we perform the 
decomposition LU = S and subsequently solve the two triangular systems L z = b and U x = z. 
The calculation of the triangular matrices L and U is the computationally intensive part of the 
process, and for general dense matrices is O(N  3) where N is the size of the matrix. 
   

Original System S x = b 
1.) Decomposition LU = S 
2.) Forward Substitution z = L-1 b 
3.) Backward Substitution x = U-1 z 

 
Our matrix S is assumed to be sparse and unstructured. Unfortunately, the matrices L and U may 
not be as sparse as the original matrix S.  The sparcity of L and U, and hence the computational 
complexity of the problem, is profoundly dependent upon the ordering of the original matrix S. 
Re-ordering the unknowns to reduce the size of the L and U matrices has a directed impact on 
the parallel solution of the system. This is extremely important for parallel systems such as the 
ASCI Blue machine, since it minimizes the amount of message passing. Without reordering, it is 
possible that every processor communicates data with every other processor, creating a show-
stopping bottleneck in the computation. With optimal re-ordering only nearest-neighbor 
communication is required. 
 
Several types of orderings such as multilevel red-black can be used to achieve a higher degree of 
scalability [5]. These orderings attempt to redistribute the unknowns in a manner that reduces 
serialism, with an increase in communication efficiency. Thus, the optimal ordering is often 
dependent upon the specifics of the parallel system. Using reordering of the unknowns, sparse 
direct methods have been shown to have O(N 2) complexity for a wide variety of finite difference 
and finite element applications [6]. Typically, if the matrix A has m non-zero entries per row, 
then the matrices L and U will have m2 non-zero entries. For large systems of equations m2 << N 
and we have a significant computational savings. These methods had not previously been applied 
to electromagnetic problems, and these methods have not been tried on ASCI class machines.  
 
The approach described above is only one of the approaches pursued for solving this difficult 
problem. Other approaches investigated include Shur complement methods which first solve for 
the boundary unknowns Xs using the Shur complement of A, and then solve for the interior 
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unknowns Xv [5]. In a parallel implementation all n processors work on computing Xs, which 
involves dense matrix linear algebra, and then all n processors work on computing Xv, which 
involves only sparse matrix algebra. This approach also takes into account the structure of the 
matrix, but parallelism is accomplished in a different way. 
 
Other viable approaches investigated for solving our system of equations included sparse 
approximate inverse (SPAI) techniques, incomplete LU factorization (ILU), and fast multi-pole 
methods (FMM). The SPAI technique involves computing a preconditioner M that is a sparse 
approximate inverse of the original matrix A, hence application of the preconditioner is trivial to 
parallelize. The primary research issue here is computing an effective approximate inverse [7]. 
Fast multi-pole methods employ a multipole expansion of the EM fields; an exact expansion can 
be used as an alternative to storing the dense matrix D, or a truncated expansion can be used an a 
preconditioner to the matrix D. The FMM has been shown to be an N log2 N method for a certain 
class of simple CEM problems [8], the research issue here was to determine how effective it is 
for our inhomogeneous problems. 

Progress and Results 
 
Collection of Representative Matrices 
 
The first activity completed under this effort, was the development of a CEM matrix test-bed by 
collecting a variety of linear systems of equations. These systems were comprised of various 
physical geometries and formulated with a variety of numerical procedures. The purpose of this 
test bed was to be able to evaluate combinations of preconditioners and solvers for applicability 
with different formulations (dense, sparse, hybrid, etc.) and different operators that yield 
differing conditions numbers. Information was also compiled for different sizes of systems to 
evaluate scalability issues. This information was organized in a web page under the Center for 
Computational Engineering to be used as a resource by the electromagnetics community at large. 
The URL for this information is http://cce.llnl.gov/solver. This is the fundamental mechanism 
that we used to transfer information among the collaborators on this effort. 
 
Development of the solver framework 
 
During the beginning of this activity, we began the development of the solver framework. The 
purpose of the solver framework is to 1) provide applications with a common interface to a 
variety of solvers and preconditioners, 2) provide developers with flexible and extensible system 
for incorporating new algorithms. Before we began to write code, we thought it would be wise to 
evaluate some existing linear solver packages. The phrase “six months in the laboratory can save 
you six hours in the library” is equally appropriate for software development. We evaluated 
PETSc (Portable Extensible Toolkit for Scientific Computing, Argonne), PMLP (Parallel 
Mathematical Library Project, Mississippi State), Hypre (LLNL), MTL (Matrix Template 
Library, University of Notre Dame), and ISIS++ (Iterative Scalable Implicit Solver in C++, 
Sandia National Laboratory). Of these solver libraries, the ISIS++ software seemed to have a 
simple and elegant design, and we chose to build upon the ISIS++ software rather than start 
entirely from scratch.  
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We re-wrote the ISIS++ software so that it could be used for complex-valued linear systems. In 
fact, we used generic programming techniques to re-write the software so the basic abstractions 
such a vectors, matrices, iterative solvers, and preconditioners are independent of data type. This 
way, the algorithms are independent of whether the underlying matrix entries are single precision 
real, double precision real, single precision complex, double precision complex, etc. We have 
generic (type-independent) MPI-based parallel versions of the following Krylov methods: 
Conjugate Gradient, Conjugate Gradient Squared, Bi-Conjugate Gradient Stabilized, Conjugate 
Gradient Normal Equations, Conjugate Gradient Normal Residual, Quasi-Minimal Residual, 
Generalized Minimal Residual, and Flexible Generalized Minimal Residual. We refer to our new 
framework as ISIS++2.0 and it is written in the C++ language. The image below depicts the 
structure of the framework. 
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The next step was to incorporate direct solvers into the framework. We required both a dense 
direct solver and a sparse direct solver. We evaluated PSPACES (University of Minnesota), 
SuperLU (University of California, Berkeley), OBLIO (Old Dominion University), and 
SPOOLES (DARPA/BOEING) as potential candidates for a sparse direct solver. The SPOOLES 
package was the only package that supported complex-valued matrices and was parallel. We 
completed the integration of the SPOOLES package into our solver framework in January of ‘01. 
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In addition, the ScaLapack library, which is the industry standard for dense systems, was 
incorporated into the framework.  
 
Preconditioner research 
 
We began early to investigate application specific preconditioners for dense complex-valued 
matrices resulting from integral-equation solution on Maxwell’s equations. Initially, we 
concentrated on a class of preconditioners known as approximate inverse preconditioners. The 
original system is given by Ax . We first form a splitting A A  where A  consists of a 
the very largest entries of A , for example the largest 100 entries per row. The matrix A  is used 
as the preconditioner, which requires the action of A . However since A  is sparse we can use 
techniques commonly employed in finite difference and finite element applications to solve this 
problem. In the approximate inverse method, we compute a matrix Q A  either by 
minimizing the Frobenius norm or by employing so-called “mesh-neighbor” approaches. This 
approach is appealing since it is easy to parallelize and it works for complex-valued linear 
systems. In addition, it does not require symmetry or definiteness of the matrix. Our evidence 
indicates the approximate inverse preconditioner combined with an accelerator such as GMRES  
yields a method that is significantly more computationally efficient that the direct methods 
previously employed.  

b= A1= + 1

1

1

1
1−

1

≈ −1

 
Shur Complement 
 
One approach for improving the convergence of Krylov methods when applied to hybrid FEM-
BEM matrices is to use the Schur Complement. We begin by writing the system of equations in 
block form 
 

A B
C D

x
x

y
y

L
NM
O
QP
L
NM
O
QP =
L
NM
O
QP

1

2

1

2

 

 
where A, B, and C are sparse blocks and D is a dense block. The subvector x1 represents the 
internal unknowns and the subvector x2 represents the boundary unknowns. The idea is that the 
matrix D is small enough to be “inverted” directly. Using surface-to-volume ratio arguments, the 
Schur Complement approach has a memory savings of N2/3 compared to using a direct solver on 
the whole system. For example, for a computer with 8 GB of memory, the direct LU approach 
restricts us to problems of order 22k unknowns (complex double precision), whereas with the 
Schur Complement approach we can theoretically fit systems of order 2.89 million unknowns. 
The Schur Complement also permits the use FMM methods to effect the “inversion” of the D 
matrix. 
 
Matrix based preconditioners 
 
As mentioned earlier, we took a two-pronged approach to preconditioner research. The first tasks 
focused on matrix based preconditioners. The later tasks focused on direct operator 
preconditioners. 
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SPAI 
 
We investigated Sparse Approximate Inverse methods as a possible preconditioner for our 
electromagnetics applications.  Given a system A x = b the idea behind the SPAI is to construct a 
sparse matrix S-1 that somehow approximates A-1. With CASC’s SPAI algorithm the sparsity 
pattern of S-1 is equal to that of A, or of A*A, or of A*A*A, etc. The advantage of SPAI is that it 
is a general linear algebraic method that is not tuned to any particular differential operator. There 
were several research issues: first, CASC’s SPAI code had to be modified to support complex 
arithmetic; second there was little theory describing convergence of SPAI preconditioned krylov 
methods so we had to resort to computational experiments to determine the efficiency of the 
method for our electromagnetics problems. 
 
PILU 
 
We also investigated Incomplete LU preconditioners. The original matrix A has a LU 
decomposition A = LU where L is lower triangular and U is upper triangular. The matrices L and 
U can be quite full even when A is sparse. The idea behind ILU is to compute sparse matrices Ls 
and Us (i.e. incomplete) that approximate L and U, respectively. The parameter k denotes the 
amount of fill in Ls and Us; typically there is an application dependent optimal value of k. ILU(k) 
has been a “workhorse” preconditioner in numerical PDE codes for many years, historically the 
primary issue was efficient parallelization of the ILU(k) method. Fortunately one of our 
academic collaborators had developed a nearly scalable parallel ILU(k) code. The next step was 
to develop a complex valued version of the ILU(k) and to try it on our electromagnetics 
problems. 
 
Operator Normalization 
 
The two primary cost factors associated with an iterative solver are the operation count required 
to compute a matrix-vector product, and the number of iterations required to achieve a given 
residual error level. A number of relatively mature algorithms are available which reduce the 
computational costs associated with the matrix-vector product operation. In contrast, well-
conditioned BIEs are not presently available for most electromagnetic scattering problems. For 
this reason, the following discussion suggests a new framework for the development of effective 
and generalizable BIE renormalization/preconditioning methods. It is important to indicate that 
the proposed class of BIE renormalizations are also compatible with most of the hierarchical, 
multi-level schemes that reduce the computational costs of a matrix-vector product operation 
(such as FMM). Parallel implementations of the BIE renormalizations outlined below are also 
possible. 
 
BEM Preconditioners 
 
Preconditioners for boundary integral equations (BIEs) can be divided into two somewhat 
overlapping categories: those derived from matrix theory which are applied to the discretized 
form of the BIE operator, and those which are applied prior to discretization. The latter are 
typically based on the properties of the physical problem and/or BIE used to formulate an 
equivalent problem. The development of the former set of preconditioner for general linear 
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matrix equations has a relatively long history and has resulted in a large number of methods 
designed for matrices having specific properties. However, experience indicates that the proper 
choice of such methods for a given scattering problem is often difficult.  
 
For these reasons, we developed an alternative framework for the development of BIE 
preconditioner methods for electromagnetic scattering problems. This alternative approach is 
based both on a physical understanding of the actual scattering problem, and a physical 
interpretation of the BIEs used to formulate an equivalent (i.e., nonphysical) boundary value 
problem. This approach is distinct from most previous physically motivated BIE renormalization 
methods in that both the physical and nonphysical aspects of the equivalent boundary integral 
formulation are considered. Several investigators have considered physically-motivated 
renormalizations of the electric (EFIE), magnetic (MFIE) and combined (CFIE) field integral 
equations in order to facilitate the numerical simulation of specific scattering problems. 
However, the inability of these methods to adequately account for the differences between the 
physical and equivalent problems has made it difficult to extend their physical insights to more 
general scenarios. 
 
The derived framework for preconditioner development is illustrated in Figure 9. As indicated in 
the figure, the proposed framework consists of a sequence of renormalizations. The focus of this 
effort was implementing this sequence and evaluating the performance on selected CEM 
solutions. 
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Figure 9.  Derived framework for developing well-conditioned BIEs. 
 
FMM 
 
The fast multipole method (FMM) is a procedure for accelerating the “n body” interaction 
problem, which essentially describes most BEM solutions. Originally developed in astrophysics, 
FMM methods have recently been extended to CEM. These methods are used to accelerate the 
matrix-vector product associated with an iterative solution. We worked through the Institute for 
Scientific Computational Research (ISCR) in collaboration with Professor Karl Warnick of 
BYU. Dr. Warnick extended the basic FMM method to include the additional operators present 
in LLNL key CEM code suites. 
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Representative Results 
 
In this section, representative results are given. The results shown in these figures were all 
obtained on Blue using a non-optimized version of ISIS2 compiled using KCC.  Consequently 
they were intended to illustrate basic functionality and scalability characteristics of the ISIS2 
library and not optimal performance characteristics. 

  
This figures shows a scalability study comparing the performance of ScaLAPACK’s LU 
factorization with the Quasi Minimum Residual (QMR) solver in ISIS2 on dense, complex 
valued matrices.  QMR was tested with two matrices: one well conditioned (cond(A) ~ log(N)), 
one poorly conditioned (cond(A) ~ N^2.)  The number of unknowns (N) and the number of 
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processors (P) were chosen such that N^2/P = 1x10^6   

 
This figure approximates the increase in memory required to store a hybrid matrix using a 
standard dense scheme and our sparse/dense hybrid scheme as the number of unknowns grows.  
The red lines illustrate that by using this hybrid scheme we can increase the maximum problem 
size for a fixed memory footprint by a factor of ten.   
 
The approximations are based on the following hypothetical matrix with a dense portion made of 
the interactions of all of the nodes on the surface of a sphere and a sparse portion derived from 
the nearest neighbor (27 point) interactions of the nodes in the interior of the sphere. 
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This shows the timing results for three hybrid problems as the number of processors is increased.  
“EM Whistle” has 3068 unknowns, “Matrix 2K” has 2010, and “Matrix 8K” has 7863.  The 
dashed lines indicate what would be expected if we obtained “perfect speedup” i.e. twice as 
many processors should cut the solve time in half.  The 8K example problem is the only problem 
that show considerable speedup indicating that this method shows its strength on larger 
problems. 
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This figure is a sanity check of the iterative solvers in ISIS2.  The matrices were Poisson 7 pt 
stencil, real valued.  The right hand side and solution vectors were complex valued.  The 
“Expected Speedup” curve assumes that the solve time will double when the number of 
unknowns and processors are both doubled.
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This figure shows the rate of convergence of the Shur Compliment solver using three different 
iterative solvers.  The matrix in each case was the “EM_whistle” matrix.  This is a very poorly 
conditioned complex valued matrix but the solvers work quite well.   
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This shows a scalability comparison of ScaLAPACK’s LU factorization and QMR on a real 
valued matrix with condition number which grows like log(N).  As expected, QMR’s solve time 
remains roughly constant while LU grows nearly linearly with N.  Note that N^2/NumProcs = 
const.  
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These two images display the convergence rate for scattering from l/20 square PEC screen. 
BiCGStab convergence histories for standard electric field integral equation are shown in the 
first image and the convergence for the modified EFIE is shown in the later.  
Number of basis elements: EFIE: N=408, 1045.  MEFIE: N=408, 803. 
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